Combined Effects of Elevated pCO2 and Warming Facilitate Cyanophage Infections
نویسندگان
چکیده
Elevated pCO2 and warming are generally expected to influence cyanobacterial growth, and may promote the formation of blooms. Yet, both climate change factors may also influence cyanobacterial mortality by favoring pathogens, such as viruses, which will depend on the ability of the host to adapt. To test this hypothesis, we grew Plectonema boryanum IU597 under two temperature (25 and 29°C) and two pCO2 (400 and 800 μatm) conditions for 1 year, after which all treatments were re-exposed to control conditions for a period of 3 weeks. At several time points during the 1 year period, and upon re-exposure, we measured various infection characteristics of it associated cyanophage PP, including the burst size, latent period, lytic cycle and the efficiency of plaquing (EOP). As expected, elevated pCO2 promoted growth of P. boryanum equally over the 1 year period, but warming did not. Burst size increased in the warm treatment, but decreased in both the elevated pCO2 and combined treatment. The latent period and lytic cycle both became shorter in the elevated pCO2 and higher temperature treatment, and were further reduced by the combined effect of both factors. Efficiency of plaquing (EOP) decreased in the elevated pCO2 treatment, increased in the warm treatment, and increased even stronger in the combined treatment. These findings indicate that elevated pCO2 enhanced the effect of warming, thereby further promoting the virus infection rate. The re-exposure experiments demonstrate adaptation of the host leading to higher biomass build-up with elevated pCO2 over the experimental period, and lower performance upon re-exposure to control conditions. Similarly, virus burst size and EOP increased when given warm adapted host, but were lower as compared to the control when the host was re-exposed to control conditions. Our results demonstrate that adaptation but particularly physiological acclimation to climate change conditions favored viral infections, while limited host plasticity and slow adaptation after re-exposure to control conditions impeded host biomass build-up and viral infections.
منابع مشابه
Long-term Effects of Elevated CO2 on the Proliferation of Cyanophage PP
Much of the research effort focused on the impacts of elevated CO2 on marine algae but very little work was done on freshwater algae, or on freshwater algal viruses. In this paper, we studied the impacts of elevated CO2 on the infection of a freshwater cyanobacterium (wild Leptolyngbya sp.) by cyanophage PP that have a wide distribution in China. In a 12-month experiment, logarithmic-phase host...
متن کاملOcean acidification exerts negative effects during warming conditions in a developing Antarctic fish
Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming ...
متن کاملCorrection: Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures
Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and ...
متن کاملInteractions between Ocean Acidification and Warming on the Mortality and Dissolution of Coralline Algae(1).
Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative e...
متن کاملEffects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc.
Recent work has shown that the behaviour of marine organisms can be affected by elevated PCO2 , although little is known about the effect of multiple stressors. We therefore investigated the effect of elevated PCO2 and temperature on locomotion and behaviour during prey searching in the marine gastropod Concholepas concholepas, a predator characteristic of the southeastern Pacific coast. Movem...
متن کامل